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A bs tract 

On the basis of the hypothesis that particle mass is anisotropic rather than isotropic, we 
investigate the relativistic motion of a particle within the framework of flat space-time. 
Assuming that the mass anisotropy is associated with the photon cloud of the particle, 
we argue that the self-energy of a particle is of the order of magnitude 16 m/Mol "~ 0"0005, 
for which conventional quantum electrodynamics, however, gives an infinite value. 

1. In troduct ion  

According to Mach's principle 'the inertial mass of a body is determined by 
the total distribution of matter in the universe', the value of inertial mass of a 
body depends on its direction of acceleration if the matter distribution is not 
isotropic. Therefore, mass is a tensor rather than a scalar quantity. 

Cocconi & Salpeter (1958, 1960) suggested that if Mach's principle was 
true, the effects of this tensor inertial-mass would appear as a spatial anisotropy 
in certain experiments. It is, however, shown by several experiments (Drever, 
1961; Hughs e t at., 1960) that the anisotropy of inertial mass is extremely 
small in a reference frame connected with the earth. The ratio of the aniso- 
tropic part of the proton inertial mass to the isotropic part is of the order of 
5 x 10 -23. 

Consequently, the isotropy of the mass tensor appears to be an experimental 
fact. We wish to emphasise, however, that negative results obtained by the 
experiments of such kinds do not  rule out all the possibilities of different kinds 
of mass anisotropy. 

Sazonov (1972) has discussed the anisotropy of relativistic mass associated 
with the anomaly of time component in the mass tensor. However, Sazonov's 
theory violates the principle of covariance which is a fundamental requirement 
for the relativistic theory. 
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From the point o f  view of  quantum electrodynamics, the particle is always 
accompanied by a photon cloud and its bare mass is not observable. The par- 
ticle mass defined in classical mechanics as an observable quantity is apparently 
considered to be the bare mass, because the concept of  photon cloud is not 
introduced into classical mechanics. I t  is accepted that the special theory of  
relativity is valid for macroscopic as well as microscopic motion of  the particle. 
Therefore, the photon cloud which is a microscopic entity may also be taken 
into account to describe the relativistic mot ion of a particle, and then one 
might be able to expect the possible appearance of  new physical laws. In this 
paper, we shall a t tempt  to construct a relativistic theory of a particle with 
anisotropic mass associated with the photon cloud. 

2. Theory 

2.1. The Special Theory of  Relativity for the Particle with Isotropic Mass 

Let us, first, briefly consider the ordinary theory of special relativity so as 
to make the discussion of the motion of a particle with anisotropic mass very 
clear. 

Particle mass is generally defined by a scalar coefficient in the following 
expression for the action of the particle, 

L = -moe  f ds (2.1.1) 

where c is the velocity of  light. The line element is usually given as 

ds = ~/(gij dxi dxi) (2.1.2) 

with the metric tensor goo = - g n  = -g22  = - g 3 3  = 1 and dxo = edt. The 
four momentum of  the particle is given by 

8Z O(dL) (2.1.3) 
Pi = -gil 6x i =- -gii  3(dxi) 

Performing this differentiation, we obtain the well known formulae, 

moc 
Po = X/(1 - 13 2) (2.1.4) 

~OVc~ 
P~ - x/(1 -- fi2) (a = t ,  2, 3) (2.1.5) 

where 13 = v/c. From these relations, (2.1.4) and (2.1.5), the particle dispersion 
law yields 

po 2 _ p2 = m 2 c  2 (2.1.6) 

From the definition of energy E = ePo, we can also obtain 

mo e2 
E(v) = x/( t  - /32)  (2.1.7) 
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for the velocity dependence of  energy and 
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E(p) = N/(m02c 4 + p2c2) (2.1.8) 

for the momentum dependence of  energy. The ordinary Lorentz transformation 
under which the line element (2.1.2) and consequently the action of  the 
particle (2.1.1) are invariant is 

where 

A =  

x~ = Aqxj (2.1.9) 

I 7 -~7 1 -¢~7 3' 

1 

1 

(7 = (1 - fi2)-1/2) (2.1.10) 

The transformation for four momenta can be written as 

p ; = a r p j  (2.1.1t) 

where A T is the transpose of  the matrix A. The fact that the dispersion law 
(2.1.6) is invariant under transformation can easily be proved as follows: 

p,Tgp, = (arp)rg(aTp) = pr (agaT)p  = pTgp 

where we used the relation AgA r = g 

2.2. General Form o f  the Action o f  the Particle 
If  the mass of  the particle is assumed to be a tensor rag, it becomes possible 

to rewrite the action of the particle in the general form 

L = - c  f x/(giimikm]l dx~ dxl) (2.2.1) 

When the mass tensor is written as 

mile = MoSik (2.2.2) 

where M o is referred to as isotropic mass, the action of  the particle (2.2.1) 
leads to 

L = -Moc f ~/(Ukt dxl¢ dXl) (2.2.3) 

where we have introduced a new tensor 

Ukl = gijSik Sjl (2.2.4) 

Then, the line element of  our space-time is 

(ds) 2 = Ukl dxk dXl (2.2.5) 

which is, generally, not  invariant under the ordinary Lorentz transformation 
(2.1.9) for the case of  Ukt -~gkt. We must find out a new Lorentz transform- 
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ation under which the line element (2.2.5) and consequently the action of the 
particle (2.2.3) are invariant. In view of the experimental results (Drever, 1961; 
Hughes et al., 1960) for inertial mass of the particle, the tensor Ukt is assumed 
to be spatially isotropic, i.e. 

U =  

--1 
- 1  

(2.2.6) 

where Go is a constant on which all characters of the mass anisotropy are 
imposed. The constant b defined through the relation Go = (1 + b) 2 will be 
referred to as the anisotropy constant. It is clear that the ordinary theory of 
special relativity corresponds to a special choice of  the metric tensor 
U o o  = - U n  = - U 2 2  = - U 3 3  = 1.  

2.3. Relativistic Theory o f  the Motion o f  the Particle with Anisotropic Mass 
In this section, we shall discuss the case of the particle with anisotropic 

mass. A relation will be derived between the isotropic and anisotropic masses. 
If  we introduce a new constant 

Co = e/~/Go (2.3.1) 

it is possible to write down the line element (2.2.5) in the form 

where 

ds = x/(Uii dxi dxj) = x/(gij dXi dX i) 

1 
dX° - Vo1"o dx° = co dt 

dXc~ = dxa 

(2.3.2) 

(2.3.3) 

The action of the particle, then, leads to 

L = - M o c f  x/(gij dXi dX i) 

= - m , e o  ~ x/(gij dXi dXj) 

where 

m ,  = ~/(Go)Mo 

and the corresponding four momentum is given by 

8L 3(dL) 

(2.3.4) 

(2.3.5) 

(2.3.6) 
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From equation (2.3.6), we find, on performing the differentiation, 

re,Co 
Po = ~/(1 - ~o 2) (2.3.7) 

m.vc~ (c~ = 1, 2, 3) (2.3.8) 
?~ = ~ / ( 1  - 13o 2)  

where 

t3 0 = v/c o (2.3.9) 

and consequently the dispersion law leads to 

po 2 _ p2 =m,eo2 2 (2.3.10) 

These relations, (2.3.7), (2.3.8) and (2.3.10), with the constant Co correspond- 
ing to the velocity of light are identical in the mathematical forms with those 
given in (2.1.4), (2.1.5) and (2.1.6), respectively. Therefore, the energy is given 
as 

r e .Co  2 
E(v)=Coeo ~/(1_13o 2) (2.3.1t) 

or  

E(P) = X/(rn2,co 4 + P20o2 ) (2.3.12) 

Accordingly, the Lorentz transformation matrix for Xi and Pi is also expressed 
by (2.1.11) provided that the velocity of light c is replaced by e o. 

The particle velocity is given by differentiating the energy (2.3.12) with 
respect to the momentum Pc~, 

~E(e) = Co2/'~ = Co:',~ 
(2.3.13) 

vc~ = 3Pc~ E(P) Po 

which is, of course, consistent with the formulae obtained by the alternative 
way, i.e. 

dX~dt dX~ [ P,~ x/(gi/dXidX])]/[]][ m*c°P° ~/(gi/dXidX/)] 
v ~  = =Co ~-~o=COlm,co 

_ coPc~ (2.3.14) 
P0 

In getting the above relation we have used the fact that 

6L rn,co d X  i 
ei = -g~j ~xj : ~/(gij dx~ a x  i) (2.3.15) 

When the isotropic transverse mass of the particle is written as 

M = Mo/~/(t -- 13o 2) (2.3.16) 
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the expression for the energy of the particle (2.3.1 I) leads to 

E = , / (Go)Mco 2 -- ~.Co 2 (2.3.17) 

We thus see that all the formulae for the anisotropic mass case can be 
obtained from the ordinary case by replacing the constant c and isotropic mass 
by the constant Co and anisotropic mass, respectively. Consequently, it is 
evident that the principle of covariance holds for the case under consideration. 
It is, thus, natural to interpret Co as the velocity of light for the mass aniso- 
tropic theory, in which the anisotropic mass m ,  is the experimental mass. The 
equation (2.3.5) indicates the relation between the bare mass Mo and the 
experimental mass m, ,  although, so far, the constant Go remains undeter- 
mined. We shall give an estimate of G O later on. 

It is important to notice that the mass appearing in the expressions of the 
energy, (2.3.t 1) and (2.3.12), is not the bare massMo but the anisotropic mass 
M,. On the other hand, in the ordinary theory, all the masses appearing in the 
corresponding formulae are isotropic masses, i.e. bare masses. Since the 
expression for energy has the same mathematical forms for both anisotropic 
and isotropic mass theories, the ordinary theory gives always correct answers 
as far as bare mass is replaced by experimental one. It  should be pointed out, 
however, that our energy expression, (2.3.11) and (2.3.12), can not be directly 
reduced from the ordinary ones, (2.1.7) and (2.1.8), by using the relations 
(2.3.1) and (2.3.5). 

According to quantum electrodynamics, the particle is always accompanied 
by its self-energy which is not taken into account in the ordinary theory of 
special relativity and that the bare mass is not observable. In the present theory, 
the mass correction associated with self-energy is considered as mass anisotropy 
and bare mass is clearly distinguished from experimental mass. 

Finally, we remark that the transformation 
t N 

X i = Ai jx  j 

where 

i o ] X = - & V o / , / G o  ~o 

1 

1 

(vo -- 1/,/(1 - ~o 2) 

makes the line element (2.2.5) invariant. However, it is no longer necessary 
because our space-time shifts from Uq dxi dxj to gij dXi dXj. 

3. Estimate o f  the Anisotropy Constant b 

As was shown in the previous section, the physical laws for the case under 
consideration have the same mathematical forms as those for the ordinary case 
except replacing isotropic mass by anisotropic one. However, the difference 
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between mass isotropic and mass anisotropic theories appears in physical con- 
cept of space-time. In this section, we try to estimate the magnitude of aniso- 
tropic constant b. According to Sarantsev (1966), electron accelerators of 
energy up to 6 GeV which are in operation at present time confirm that the 
formulae derived from Einstein's theory of relativity, i.e. 

mo 
m = ~ / (1  - / 3  2) ( 3 . 1 )  

holds with an accuracy of I~sm/ml ",, 5 x 10 -4. It turns out that for [Am/mt 
5 x 10 -4 a complete dephasing occurred and consequently the acceleration 
process completely breaks down. Making use of this experimental result, we 
put an upper limit on the anisotropy constant b in the following way. 

The particle acceleration is generally performed by the transfer of the 
energy produced by the accelerator to the particle. The particle velocity is 
determined by the relativistic formula 

(Total energy) = (kinetic energy) + (rest mass energy) 

where the kinetic energy is just the energy which the machine transfers to the 
particle. The total energy is given by the rest mass energy multiplied by the 
Lorentz factor. Therefore, the kinetic energy transferred by the accelerator to 
the particle is independent of the relativistic formulae. In the present theory 
for the particle with anisotropic mass rn,, the energy can be written as 

,Co 2 = T + re.Co 2 (3.2) 

where Co is the velocity of light which is measured by experiments. For the 
conventional theory, i.e. the mass isotropic theory, we have 

mc 2 = T + mo c2 (3.3) 

where mo is the isotropic mass and c is the measured value for the velocity of 
light. When equation (3.2) is rewritten as 

T 
Mc°2 = ~G--£ + Mote2 (3.4) 

Mo and Co indicate the same quantities as mo and c, respectively. Then, from 
equations (3.3) and (3.4), we get the relation 

Am rn - M T/x/(Go) + me cz 
= = 1 ( 3 . 5 )  

m m Z + mo c2 

After a trivial algebra, we find 

t Am A m  mo c2 
--7---= 1 - (3.6) 

m m T x/(~0 
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Substituting the experimental value, [~xm/m I ~ 5 x 10 -4 with T= 6 GeV, 
into equation (3,6) and using the relation Go = (1 + b) 2, we obtain 

Ibt ~, 5 x 10 .4 (3.7) 

If our mass anisotropy is interpreted as a classical feature for the photon 
cloud which has been discussed to date as the self-energy of the particle in 
quantum electrodynamics, the following result is obtained. 

Since the relation between the bare mass and the experimental mass 
(anisotropic mass) is given by equation (2.3.5) 

m ,  = x/(Go)Mo = Mo + bMo (3.8) 

the self-energy of the particle is estimated to be of the order of 

t 6m I = b ' ~  5 x 10-4 (3.9) 
Mo I 

where the self-energy is given by 6mco 2 = (m ,  - Me)co 2. Although the value 
of self-energy obtained by the conventional quantum electrodynamics is 
divergent, one expects that a future theory might possibly make it small and 
finite. 

4. Concluding Remarks 

From a microscopic point of view, it is quite natural to consider the 
motion of the particle with anisotropic mass associated with a photon cloud 
rather than with isotropic mass, since the relativistic mass of the particle is 
not bare. 

On the basis of the hypothesis that the particle mass is anisotropic rather 
than isotropic, we have investigated the relativistic motion of the particle. We 
find that all the physical laws derived in the present theory for the mass ani- 
sotropic particle have the same mathematical forms as those in the ordinary 
theory of special relativity. However, one should notice that our physical laws 
are expressed using anisotropic mass contrary to the ordinary case for which the 
corresponding laws are always expressed using isotropic mass. In this work, 
experimental mass clearly distinguished from bare mass in a legitimate way. 

When the experimental mass of the particle is written as the sum of the 
bare mass and the self-energy 

m,  =Mo + 6m 

the self-energy is found to be of the order of 0"000511/0 on the basis of the 
experiment of electron acceleration. Although the value of self-energy calcu- 
lated by conventional quantum electrodynamics is unfortunately infinite, we 
hope that a future theory might produce a finite value for the electron self- 
energy. 

Finally, we note that our space-time still follows the ordinary Minkowski's 
geometry because Go is a constant for all reference frames and that the time 
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dilation and the length contraction for the case under consideration are 
identical with those for the ordinary case. 
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